

Quantum Noise-Resilient Blockchain

[WHITEPAPER : 0006]

[Date : 30-09-2025]

Quantum Noise-Resilient Blockchain

**B M Darshan Kumar, Quantum Research Lead, Aion-IA,*

Electronic City, Bangalore 560100

**M Suraj, QML Engineer Aion-IA, Electornic City, Bangalore 560100*

QNRB integrates quantum error-corrected storage, quantum-enhanced consensus, and network-level noise mitigation to preserve ledger integrity and availability under quantum-capable adversaries and realistic decoherence, going beyond classical blockchains hardened only with post-quantum signatures [1]. By encoding transactions into error-tolerant quantum states and validating them via quantum consensus with multiparty correlations, QNRB targets tamper resistance, double-spend prevention, and fault tolerance even over imperfect quantum links [2][3].

Introduction

Classical blockchains depend on cryptographic assumptions that are weakened by scalable quantum algorithms, motivating quantum-safe designs for signatures, hashing, and consensus under harvest-now-decrypt-later risks and active attacks [4][5]. Noise and decoherence in early quantum networks further threaten any naive quantum ledger, requiring embedded error correction and purification to maintain fidelity during transmission and storage [3][6]. QNRB proposes a ledger architecture that combines transaction encoding into error-tolerant quantum states with consensus that exploits quantum correlations to reach agreement securely and efficiently in adversarial, lossy environments [1][7].

Background

Surveys of quantum-secure distributed ledgers highlight the need for both post-quantum cryptography at the classical control plane and native quantum mechanisms for ledger data and consensus, reflecting a layered defense strategy [2][1]. Quantum error correction enables detection and correction of errors from environmental noise, with distributed and networked variants emerging to support modular architectures where entanglement is scarce and lossy [3][8]. Quantum-

enhanced consensus and leader-election primitives demonstrate potential efficiency and security gains from entanglement and quantum digital signatures, including pathways to surpass classical Byzantine fault-tolerance bounds under appropriate multiparty correlations [9][10].

Consensus designs tailored to consortium or permissioned contexts can leverage quantum voting, QRNGs, and correlated states to resist equivocation and bias while preserving throughput, suggesting a roadmap to practical deployment in controlled environments [11][12]. Error management in entanglement-based networks relies on local QEC, purification, and scheduling to maintain usable fidelity without prohibitive overhead, shaping realistic constraints for any quantum ledger transport [6][13].

Problem Statement

Quantum-enabled attacks threaten signature schemes, proof-of-work/authority mechanisms, and long-term confidentiality of ledger payloads, requiring protections that remain robust after cryptanalytic advances [4][5]. Simultaneously, decoherence, loss, and imperfect devices degrade quantum states used for storage or consensus, risking state corruption, forks, or denial of service if not countered with error correction and adaptive routing [6][13]. Classical consensus bounds and asynchronous network issues limit throughput and resilience, but multiparty quantum correlations and QDS-backed protocols open avenues for stronger guarantees under realistic assumptions [9][7].

QNRB Core Concept

QNRB encodes each transaction into a quantum error-tolerant representation and distributes it across nodes with redundancy and verification hooks, while consensus uses quantum-enhanced voting or correlation tests to accept only tamper-free proposals [3][11]. Multi-node entanglement and QDS-like primitives can bind unforgeability and nonrepudiation into the consensus path, reducing the impact of byzantine actors and improving fairness and liveness [9][10]. An error mitigation module continuously monitors fidelities, triggering local QEC, purification, or route changes to keep ledger states within acceptance thresholds during validation and commitment [6][13].

- Quantum Ledger Layer: Stores authenticated transaction states using suitable codes (e.g., small-distance stabilizer codes initially, evolving to distributed QEC) with verifiable syndromes for integrity audits [3].
- Consensus Engine: Implements a quantum consensus mechanism (e.g., Q-PnV-like vote with QRNG randomness or correlated-state voting) tailored to permissioned networks for security and low latency [11].
- Error Mitigation Module: Applies local QEC, entanglement purification, and scheduling to counter decoherence, integrating network-quality signals into consensus policy [6].

Architecture

Nodes maintain hybrid stacks: a classical control plane with PQC for metadata and networking, and a quantum plane for transaction state handling, entanglement management, and consensus primitives [2]. The ledger data path uses encode–distribute–verify cycles, where encoded qubits or authenticated classical digests linked to quantum tags are propagated and checked before finalization [3]. Consensus modules coordinate leader election, proposal ordering, and vote collection using quantum-assisted randomness and correlation checks to detect equivocation or tampering before commit [10][11].

A monitoring substrate collects fidelity, loss, and syndrome statistics, feeding adaptive policies that adjust quorum thresholds, reattempt entanglement generation, or re-encode pending transactions when degradation is detected [6][13]. For scale-out, distributed QEC and approximate-code strategies can extend protection across modular processors and network segments, balancing resource costs with required resilience [14][15].

Protocol Design

Step 1 — Transaction Encoding: Incoming classical transactions are hashed and mapped to quantum codewords; minimal-distance codes or authenticated tags are used initially, with migration to stronger codes as resources permit [3]. Encodings include embedded syndromes to support integrity proofs and rollback on detection of localized faults during distribution [3].

Step 2 — Quantum Distribution: Encoded states or authenticated tags are disseminated using entanglement-assisted channels with purification as needed; transport retries and scheduling handle stochastic generation and swapping [6][13]. PQC-secured classical metadata orchestrates routing, timing, and code parameters without exposing attackable quantum internals [4][2].

Step 3 — Consensus Verification: Nodes run a quantum-enhanced consensus protocol—combining QRNG-based leader selection, quantum voting, or QDS-backed message validation—to agree on candidate blocks and detect equivocation [11][9]. Correlation checks and vote self-tally techniques reduce bias and ensure fairness under consortium governance [11].

Step 4 — Error Detection & Correction: Prior to commit, nodes perform syndrome extraction and compare expected fidelities; failing paths trigger local QEC, purification, or re-encoding until thresholds are met or the proposal is rejected [3][6]. Network health informs consensus timeouts and quorum sizes to avoid finalizing under degraded conditions [13].

Step 5 — Ledger Update: Upon agreement and integrity confirmation, nodes commit by storing stabilized codewords or sealed records that bind classical block headers to quantum-authenticated payloads; periodic audits validate stored syndromes [3][2].

Security Analysis

Integrity is preserved against quantum cryptanalytic advances by binding transactions to error-corrected states whose acceptance requires consistent syndromes and consensus-approved correlations, not just classical signatures [3][1]. Noise resilience is achieved through layered QEC, purification, and adaptive scheduling, preventing silent corruption and enabling recovery before commit [6][13]. Double-spend and equivocation are curbed by quantum-enhanced consensus that leverages multiparty correlations and QDS properties to constrain malicious behavior beyond classical bounds in appropriate models [9][7].

The classical control plane remains protected by PQC, limiting harvest-now-decrypt-later risks to metadata while the quantum plane enforces tamper evidence at the data layer itself [4][2]. Formal SoK and trend

analyses support that hybrid architectures combining PQC with native quantum primitives provide the most robust path during the transition era [1][12].

Threat Model

Adversaries include quantum-capable attackers attempting to forge, replay, or tamper with ledger entries, and byzantine nodes attempting to bias consensus or partition the network [1][5]. Channel attacks exploit loss and timing to induce state errors; QNRB counters with continuous fidelity monitoring, purification, and re-encoding before commit [6][13]. Consensus attacks target leader selection and vote tally; quantum voting, QRNG randomness, and QDS-backed unforgeability reduce these vectors in permissioned settings [11][9].

Supply-chain and implementation risks—detector biases, calibration errors, or subpar codes—are mitigated by V&V practices and staged deployment that begins with conservative codes and gradually increases code distance as hardware matures [3]. Economic attacks leveraging harvest-now-decrypt-later are constrained by PQC upgrades on classical components and the quantum layer’s inherent tamper evidence [4].

Implementation Considerations

Hardware: Early deployments can use modular, networked systems supporting entanglement distribution with local QEC or purification, gradually adopting distributed QEC as interconnects mature [3][15]. Memory constraints and stochastic link behavior favor local-QEC and purification strategies in first-generation networks, with scheduled operations to minimize decoherence [6]. Nodes require QRNGs, stabilized optics, and syndrome-capable processors to support encode–verify–correct loops during consensus [11].

Integration: QNRB operates as a hybrid ledger where classical blocks are tied to quantum-authenticated payloads and consensus proofs, allowing coexistence with classical nodes via PQC-wrapped interfaces [2]. Permissioned deployments can adopt consortium-oriented consensus with quantum voting while retaining classical auditability and interoperability with existing infrastructure [11][12]. Migration paths include overlay networks that introduce quantum-assisted consensus to existing permissioned ledgers before full quantum storage is feasible [1].

Performance and Scalability

Throughput depends on entanglement generation rates, purification overhead, and code distances; scheduling and adaptive quorum policies maintain liveness under fluctuating network quality [6][13]. Consortium-style quantum consensus reduces latency relative to global permissionless settings and can scale via committee partitioning and QRNG-based leader rotation [11]. Distributed and approximate QEC frameworks promise improved resource efficiency for scale-out across many processors and links as architectures evolve [14][8].

Performance engineering entails balancing code strength with acceptable commit times, leveraging purification when links are impaired, and dynamically adjusting consensus round durations based on real-time fidelity metrics [6]. Surveys indicate that hybrid PQC-plus-quantum designs can meet near-term requirements without waiting for universally fault-tolerant hardware, enabling incremental adoption [1][2].

Use Cases

Financial Ledgers: Banks can leverage quantum-authenticated commits with PQC-secured control planes to achieve long-term confidentiality and integrity while resisting replay and double-spend attempts in consortium settings [4][11]. Scheduled audits of stored syndromes provide verifiable data integrity for regulatory compliance over long horizons [3].

Supply Chain: Tamper-resistant tracking benefits from quantum-authenticated state transitions and correlated consensus that detects equivocation among participants across regions and carriers [12][11]. Adaptive routing and purification maintain availability despite variable link quality typical of wide-area networks [6].

Government & Voting: Civic records and voting tallies can employ quantum voting and QDS-backed consensus to raise fault-tolerance beyond classical limits in permissioned deployments, improving fairness and resistance to coercion or misinformation [9][10]. PQC ensures archival durability of control-plane artifacts, while the quantum layer provides embedded tamper evidence in stored records [4].

Interoperability and Standards

Systematizations recommend hybridization: standardize PQC for signatures and key exchange while defining profiles for quantum consensus, QRNG use, and error-corrected storage semantics [1]. Trend papers outline taxonomies for quantum blockchains and identify gaps in metrics, testbeds, and compliance frameworks that QNRB profiles can help address [12]. Standards should specify code parameters, fidelity thresholds, and audit procedures for syndrome-based integrity checks to ensure cross-vendor compatibility [3][2].

Interoperability with classical ledgers relies on clear bindings between classical headers and quantum-authenticated payloads, enabling verification by classical nodes using PQ proofs-of-inclusion while quantum nodes verify syndromes and correlations [2]. Consortium networks can align on QRNG sources, leader selection fairness proofs, and QDS schemes to harmonize operations across participants [11][9].

Limitations and Open Problems

End-to-end fault-tolerance with high code distances remains resource intensive; early systems must rely on local QEC and purification with careful scheduling, accepting lower raw throughput [6][3]. Wide-area entanglement distribution is lossy and variable, complicating consensus timing and requiring adaptive policies to avoid unnecessary rollbacks or stalls [13]. Formal security models for quantum-enhanced consensus in asynchronous networks are still evolving, and proofs must capture realistic noise and adversarial capabilities [7][10].

Breaking classical BFT bounds via multiparty correlations depends on assumptions about correlation sources and device trust; practical deployments may prefer QDS-backed protocols that relax entanglement requirements while retaining strong unforgeability [9]. Distributed and approximate QEC introduce new trade-offs and verification needs; composable guarantees for dynamic code switching and cross-processor concatenation are active research areas [14][8].

Future Work

Optimize consortium-oriented quantum consensus with QRNG-backed leader rotation, quantum voting, and QDS authentication, targeting low-latency finality under fluctuating link quality [11][9]. Develop adaptive

encode–purify–schedule controllers that jointly tune code distance, purification depth, and consensus timeouts based on live fidelity telemetry [6][13]. Prototype distributed and approximate QEC pathways for ledger storage, measuring cost–benefit against local-QEC baselines across realistic interconnects [14][15].

Integrate authenticated multi-channel node communication from MCEA-style frameworks to harden control links and correlation tests within consensus, and evaluate cross-layer benefits in WAN pilots [7]. Establish conformance tests and benchmarks for syndrome auditability, leader fairness, and PQC interop to accelerate standardization and vendor adoption in regulated sectors [1][2].

Conclusion

QNRB advances a hybrid blockchain architecture that encodes transactions into error-tolerant quantum states, validates them via quantum-enhanced consensus, and sustains integrity through continuous error mitigation over imperfect networks, complementing PQC at the control plane [1][3]. By combining multiparty correlations, QRNG-backed fairness, and QEC-informed transport policies, QNRB targets robust security and liveness for finance, supply chains, and civic records as quantum capabilities mature [11][6]. Emerging results in quantum consensus and distributed QEC indicate feasible migration paths from today’s networks toward fully quantum-resilient ledgers [9][14].

References

[1] SoK: Blockchain Consensus in the Quantum Age
<https://dl.acm.org/doi/10.1145/3709016.3737798>

[2] Post-quantum distributed ledger technology: a systematic ...
<https://www.nature.com/articles/s41598-023-47331-1>

[3] Distributed Quantum Error Correction for Chip-Level ...
<https://link.aps.org/doi/10.1103/PhysRevLett.129.240502>

[4] "Harvest Now Decrypt Later": Examining Post-Quantum ...
<https://www.federalreserve.gov/econres/feds/files/2025093pap.pdf>

- [5] Quantum threat of blockchain and cryptographic systems
<https://www.lfdecentralizedtrust.org/quantum-threat-of-blockchain-and-cryptographic-systems>
- [6] Error Correction in Quantum Networks
<https://www.aliroquantum.com/blog/an-overview-of-quantum-error-correction-in-entanglement-based-networks#sum-error-correction-in-entanglement-based-networks>
- [7] Fault-Tolerant Consensus in Quantum Networks
<https://arxiv.org/abs/2305.10618>
- [8] Towards fault-tolerant distributed quantum computation (FT ...
<https://www.sciencedirect.com/science/article/pii/S2405959525000359>
- [9] Beating the Fault-Tolerance Bound and Security ...
<https://pmc.ncbi.nlm.nih.gov/articles/PMC11925315/>
- [10] Quantum-Enhanced Leader Election and the Limits of ...
<https://arxiv.org/html/2411.04629v1>
- [11] Q-PnV: A Quantum Consensus Mechanism for Security ...
<https://arxiv.org/html/2412.06325v1>
- [12] Quantum blockchain: Trends, technologies, and future directions
<https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/qtc2.12119>
- [13] Entanglement distribution in lossy quantum networks
<https://www.nature.com/articles/s41598-025-14226-2>
- [14] Distributed Quantum Error Correction with Permutation ...
<https://arxiv.org/html/2509.25093v1>
- [15] Distributed Quantum Error Correction: theory breakthrough ...
<https://nu-quantum.com/news/distributed-quantum-error-correction-theory-breakthrough-from-nu-quantum-charts-pathway-for-quantum-computing-scale-out>
- [16] Beating the Fault-Tolerance Bound and Security ...
<https://spj.science.org/doi/10.34133/research.0272>

- [17] Quantum Blockchain for Internet of Things: A systematic ...
<https://www.sciencedirect.com/science/article/abs/pii/S0045790625004677>
- [18] Quantum secured blockchain framework for enhancing ...
<https://www.nature.com/articles/s41598-025-16315-8>
- [19] Quantum Computing Entanglement
<https://consensus.app/questions/quantum-computing-entanglement/>
- [20] Distributed Ledgers and Security Mechanisms on Radio ...
<https://www.sciencedirect.com/science/article/pii/S2096720925001228>

